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Abstract 

Chatbots powered by Large Language Models (LLMs) such as 

OpenAI’s ChatGPT have demonstrated impressive capabilities 

in understanding and generating text and their potential 

applications in humanities research have been extensively 

explored. Recently, OpenAI launched its first Text-To-Speech 

(TTS) model, which has demonstrated the ability to convert text 

into highly realistic speech. This opens up various potential 

applications for prosodic research. However, before such 

applications are in place, a systematic evaluation is needed to 

determine the extent to which the synthesized speech resembles 

human speech in terms of prosody. This study aims to 

contribute to this endeavor by comparing how information 

status is conveyed by intonation in British English speech 

synthesized using OpenAI’s TTS model to the speech produced 

by native speakers of the same English variety. Through 

Functional Principal Component Analysis (FPCA) and 

statistical modelling, we found that OpenAI’s TTS model can 

generate F0 contours with various shapes. However, the F0 

contours generated by OpenAI’s TTS model conveying 

information structure differ from those produced by the human 

speakers. This indicates that the speech generated by OpenAI’s 

TTS model may not be ready for use in prosody research, yet.  

Index Terms: synthesized speech, OpenAI, intonation, 

information status 

1. Introduction 

Large Language Models (LLMs), such as OpenAI’s GPTs, 

Google’s Bard, and Meta’s LLaMa, are massive statistical 

models that generate contextually coherent texts that resemble 

human-produced texts in response to human inquiries. In 

essence, LLMs are machine learning algorithms with complex 

architectures and a vast number of parameters trained on 

substantial amounts of data. GPT-3 developed by OpenAI, for 

example, is a transformer-based generative pre-trained 

language model with 175 billion parameters trained on vast 

amounts of text sourced from the internet [1].  

Amongst the various LLMs available on the market, the 

GPT model family has demonstrated remarkable capabilities in 

comprehending and generating texts as well as human-like 

language processing patterns across multiple language 

processing tasks originally designed for human participants 

such as syntactic ambiguity resolution [2]. These language 

abilities demonstrated by the GPT models have led to a surging 

number of applications in several research fields, including 

pedagogy, medical research, psychology, and linguistics (see 

[3] for a comprehensive summary). In the field of psychology, 

LLMs are used as a window to query people’s mental models 

of themselves and their environment (social and cognitive 

psychology), infer individual differences in coping strategies 

(personality psychology), and help people reappraise stressful 

experiences (affective and clinical psychology); see [4] for a 

review.     

At DevDay on November 6, 2023, OpenAI launched its 

first Text-To-Speech (TTS) model 

(https://openai.com/blog/new-models-and-developer-products-

announced-at-devday), which converts text into speech. 

According to user reactions on the internet (e.g., 

https://community.openai.com/t/tts-api-service-

usability/482163/7), the English speech generated by this 

model is highly realistic (listen to the demo here: 

https://platform.openai.com/docs/guides/text-to-speech). 

Similar to models generating text, the performance of TTS 

models depends on system architecture and the amount of 

training data. As of the writing of this paper, OpenAI has not 

publicly disclosed the specific architecture or detailed 

information regarding the training data for their TTS model. 

What we do know is that a typical TTS system comprises two 

key components: a front-end responsible for analyzing the 

linguistic structure of input text, and a back-end that generates 

the actual speech signal. The back-end is commonly trained on 

vast amounts of real human speech data to establish connections 

between linguistic and phonetic information and corresponding 

acoustic features of speech. With a sophisticated model 

structure and large training data, it is reasonable to expect the 

back-end model to capture subtle nuances in human speech, 

producing speech with prosody that faithfully replicates that 

produced by an “average” human. Such a model can serve 

various purposes in prosodic research, including generating 

speech stimuli for perception experiments, creating prompts for 

production experiments, and simulating speech data for power 

analysis. Most intriguingly of all, such a TTS model could 

provide a window to understanding how humans convey 

information through prosody. Researchers can use synthesized 

speech directly as speech samples in production studies to 

explore prosodic variations across different experimental 

conditions. This prospect is potentially valuable for research on 

speech production, particularly considering the commonly 

shared experience that recruiting and testing human participants 

is both costly and time-consuming. While the potential for 

LLM-powered phonetic research is appealing, it is important to 

note that LLMs still have issues such as hallucinations, the use 

of private data for training, and their role in perpetuating biases, 

etc. (see [5] for detailed information). 

Prosody plays a crucial role in conveying information about 

the linguistic context of utterances across various linguistic 

levels (see [6], [7] for extensive reviews). Intonation, in 

particular, can be used to signal information structure. For 

example, in English, new information, i.e., information that 

should be added to the common ground, is typically conveyed 



using high pitch (H* pitch accent, in autosegmental terms) on 

relevant items in the utterance [8], [9]. Though this much is 

clear, there is a longstanding debate in English regarding the 

mapping between prosody and information status. One 

viewpoint posits that while items that represent new 

information are H* accented, as mentioned, items presenting 

contrastive or corrective information are realized with an F0 

rise, denoted as L+H*. However, evidence from both 

production and perception does not support such a one-to-one 

mapping. For example, it is found in [10] that H* is compatible 

with both new and contrastive contexts.  It is reported in [11] 

that L+H* is relatively infrequent and used not only with 

contrastive topics or foci, but also with non-contrastive items, 

though less frequently.  

While additional studies are needed for a better 

understanding of how information status is conveyed through 

prosody, this study is not designed to contribute to this goal. 

Instead, our aim is to compare information status as conveyed 

through F0 in synthesized British English speech to that in 

speech produced by native Standard British English (SBE) 

speakers. To achieve this, speech produced by human speakers 

and that synthesized using OpenAI’s TTS endpoint was 

analyzed following the procedures normally used to analyze 

human speech, including F0 curve modelling using Functional 

Principal Component Analysis (FPCA) followed by statistical 

analysis of the PC coefficients.    

2. Methodology 

2.1. Human speech data 

We obtained unscripted speech from 8 native speakers of 

Southern British English (5 females, 3 males, age 18-54, mean 

age 29.25) using three tasks: a storytelling task, a map task, and 

an informal discussion about a set of unusual objects.  

The recorded speech data were annotated for pitch accents 

and information status separately. Pitch accent annotations 

were performed by an expert annotator based solely on F0 

shape, resulting in 2,450 instances of H* or L+H*. A second 

expert annotator independently annotated 8% of the accents. 

High inter-annotator agreement was observed (Unweighted 

Cohen’s Kappa = 0.84, C.I. = 0.79 – 0.89). Information status 

annotations relied solely on orthographic transcripts: items 

were marked as corrective if explicitly correcting a previously 

mentioned item, and as contrastive if part of an implicit set of 

alternatives. The resulting pragmatic labels were then paired 

with the accents, with each accented item labelled as corrective 

or contrastive if marked as such in the orthographic transcript, 

and as new otherwise.   

2.2. Synthesized speech data 

The input texts used for speech synthesis were 108 question-

answer pairs, where the questions were designed to elicit 

answers evenly distributed across the same three pragmatics 

conditions as present in the human speech data: new, 

contrastive, or corrective information (see Table 1 for 

examples). The answers were composed of either single words 

or two content words. The former had only one accent, the 

target of analysis (in italics in Table 1); the latter had two pitch 

accents, with the first word carrying a prenuclear accent and the 

second word carrying the target accent (in italics in Table 1). 

Thus, all the accents under investigation were utterance-final 

nuclear accents. 

Table 1: Example dialogues.  

 Single words Compounds 

Non-

contrastive 

(new) 

Q: What's your first 

name?  

A: Mary. 

Q: What is the fruit on 

the table? 

A: A yellow melon. 

Contrastive Q: Who should I 

call first, Mary or 

Lana?  

A: Mary. 

Q: Did you buy a 

yellow melon or a 

yellow pumpkin?  

A: A yellow melon. 

Corrective  Q: Are you friends 

with Miriam?  

A: Mary. 

Q: Is that a yellow 

pumpkin? 

A: A yellow melon. 

 

The question-answer dialogues shown in Table 1 (excluding the 

“Q” and “A” identifiers before the sentences) were converted 

to audio using OpenAI’s TTS API in Python, following the 

tutorial provided at 

https://platform.openai.com/docs/quickstart?context=python 

and https://platform.openai.com/docs/guides/text-to-speech. 

Specifically, we used the tts-1-hd model, which is optimized 

for quality. Another option is tts-1, which is optimized for 

speed and more suitable for real-time synthesis tasks. The tts-

1-hd model offers six preset voices, including three male and 

two female voices with an American English accent and one 

male voice (“Fable”) with a British English accent. We used 

the voice of Fable. The input texts contained no marks that 

could affect the resulting prosodic markup, such as 

capitalization, italics, or exclamation marks. The output audio 

files were saved to the local disk in .mp3 format. Despite its 

lossy nature, the .mp3 format has no impact on F0 [12], the 

measurement that the present study focused on.  

2.3. F0 curve modelling 

The F0 contours of the target accents in both the human speech 

data and the synthesized speech data were modeled in the 

following steps. First, F0 values (in Hz) were extracted at a 

time-step of 5 ms using PRAAT [13]. Second, the raw F0 

curves were processed to remove F0 doubling and halving and 

were interpolated to fill F0 gaps. Third, the resulting curves 

were normalized by speaker using z-scores to eliminate 

individual speaker characteristics. Forth, the normalized F0 

curves were modelled using FPCA in one analysis, following 

standard procedures outlined in [14]. In essence, FPCA models 

input curves using principal component curves, turning each 

input curve into a mathematical function of time:  

���� ≈ ���� + �1 × ��1��� + �2 × ��2��� +  …     (1) 

In eq. (1), f(t) represents the modelled F0 curve, μ(t) is the mean 

curve of all input curves, PC1(t), PC2(t), etc. are the principal 

component curves, each representing a dominant mode of 

variation across curves, and s1, s2, etc. are the coefficients 

associated with the respective PCs, reflecting the contribution 

of the respective PCs to the resulting curve’s shape. Each input 

curve has its unique set of PC coefficients, thereby 

characterizing the raw curves. The PC coefficients were used as 

dependent variables in statistical analysis.  

2.4. Statistical analysis 

To investigate potential differences in F0 contour shapes across 

different information statuses between human and synthesized 

speech, we fitted Bayesian mixed-effect models in R [15] using 



the Brms package [16], a wrapper package for the probabilistic 

programming language Stan [17]. The model included PC 

coefficients (PC1, PC2, etc.) as dependent variables. The 

constant effects were pragmatics with three levels: non-

contrastive (“NC”) as the reference level, contrastive (“CT”), and 

corrective (“CR”), source with two levels: human (“H”) and 

synthesized speech (referred to as machine, “M”), and the 

interaction between pragmatics and source. The model’s 

random structure included item with fixed slopes and speaker 

with varying-slope for pragmatics. The models were fitted 

using 4 chains, 10,000 iterations each, including 4,000 warm-

ups, and uninformative priors with a normal distribution with a 

mean of 0 and a standard deviation of 5. 

For the effects of interest, we report the mean and the lower 

and upper bounds of 95% credible interval (95% CrI) of the 

posterior probability distribution. If the 95% CrI excludes zero, 

indicating that zero is an implausible value for the model 

parameter given the data, it indicates that the probability that 

the effect of interest is present is 95%. Conversely, if the 

interval includes zero, the effect of interest is likely to be absent. 

3. Results 

The FPCA of the F0 curves obtained from the human speakers 

and the TTS model shows that the first three PCs explained 

96.4% of the variance among the curves (PC1: 75.1%; PC2: 

15.3%; PC3: 6.0%). Our analysis focuses on those. The effect 

of each PC on the mean curve is visualized in Figure 1 by 

applying different scores of the PC to the mean curve (solid 

black line). The scores range from +1 to -1 standard deviation 

of the PC’s coefficient in increments of 0.25. As shown in the 

figure, PC1 controls scaling, with larger weights resulting in 

curves with higher scaling. PC2 influences the slope of the 

curve, with larger weights reducing the steepness of the F0 fall. 

PC3 modifies the curve’s curvature, with smaller weights 

resulting in a convex shape with a F0 peak.  

 

Figure 1: Color-coded curves illustrate the effect of 

each PC on the mean curve (solid black line). The 

vertical line indicates the onset of the accented vowel. 

Descriptive statistics on the sub-dataset containing only data for 

the machine speech suggest variations in the PC coefficients 

among the input curves (PC1: range [-21.5, 41.8], median = 

0.94, SD = 11.7; PC2: range [-29.7, 9.2], median = -7.5, SD = 

6.7; PC3: range [-22.4, 8.7], median = -4.2, SD = 4.9). This 

suggests that the TTS model is capable of generating F0 

contours with different shapes. Figure 2 presents 20 randomly 

selected F0 contours from the synthesized speech subset. As 

shown in the figure, some curves, e.g., 70, 100, and 158, feature 

a falling shape (represented as H*), whereas others, e.g., 144, 

286, and 301, feature a rise-fall shape (L+H*).   

 

Figure 2: 20 randomly selected F0 contours from the data 

set containing only the machine speech. Red circle: raw 

F0 points at times; blue solid line: smoothed curve; 

vertical dash line: stressed vowel onset.  

Pairwise comparisons shown in Figure 3 reveal that, for the 

speech produced by human speakers, there was a 95% 

probability that F0 curves in the corrective condition had lower 

PC1 and PC3 coefficients, suggesting lower scaling and a more 

convex shape, compared to those in the non-contrastive 

condition. Moreover, F0 curves in the contrastive condition had 

lower PC3 coefficients, hence a more convex shape, compared 

to the curves in the non-contrastive condition. Furthermore, F0 

curves in the contrastive and corrective conditions mainly 

differed in terms of PC1, with the curves in the contrastive 

condition having higher scaling than those in the corrective 

condition. As for the synthesized speech, there is no discerning 

evidence suggesting a difference in any of the PCs between the 

three pragmatic conditions, as the 95% CrIs include 0 as a 

plausible value. 

 

Figure 3: 95% CrIs of the posterior probability 

distributions of the slope parameter β for the effect of 

pragmatics on the three PCs.  

Figure 4 presents the estimated difference between human and 

machine in each PC in each pragmatic condition. It shows that 

the curves obtained from the two sources in the non-contrastive 

condition differ in all three PCs. The curve generated by the 

machine has higher scaling (PC1), steeper slope (PC2), and a 

more convex shape (PC3), compare to that produced by human 

speakers. In the contrastive and corrective conditions, the 



curves generated by the machine differ from those produced by 

human speakers mainly in terms of slope, having a steeper slope 

compared to those produced by human speakers. The above-

mentioned shape differences can be best appreciated by 

referring to the F0 curves reconstructed using Equation 1 

involving the PC coefficients derived from the Bayesian mixed-

effect model (Figure 5).   

 

Figure 4: 95% CrI of the estimated difference between 

machine and human (M-H) in each PC in each 

pragmatic condition. 

 

Figure 5: F0 contours in the three pragmatic 

conditions for human and machine reconstructed 

using eq. (1) involving PCs 1, 2, and 3 and the 

estimates of the Bayesian mixed-effect model. The 

vertical dotted line indicates the onset of the accented 

vowel. 

4. Discussion 

In this study, we compared how information status is conveyed 

by intonation in British English utterances synthesized using 

OpenAI’s TTS model and utterances produced by native 

speakers of this variety. Our analysis revealed that while the 

TTS model can generate F0 contours with diverse shapes, these 

contours differ from those produced by humans across all three 

pragmatic conditions. Although the text used for speech 

synthesis differed from what human speakers produced, this 

discrepancy is not a concern, as FPCA captures only the 

dominant variance among F0 curves. Considering the human 

data (2,450 accents produced by 8 speakers) is unscripted and 

sizeable by the standards of phonetic research, we are inclined 

to say that the F0 patterns found in human speech more 

truthfully reflect how information status is conveyed in 

unscripted British English than what was revealed from the 

synthesized speech. Future research should explore the 

relevance of the observed differences between human and AI-

generated speech for communication. However, it is clear that 

the differences between our expectations and the AI-generated 

F0 contours were audible to the authors of the present study, 

and in some instances, the differences were meaningful. Further 

discussion on this topic follows below.  

The reason why the F0 contour shapes generated by the 

TTS model deviate from those produced by humans in the 

pragmatic conditions is not entirely clear due to the lack of 

transparency in the workings of complex machine learning 

models. There are two plausible explanations. One possibility 

is that the labeling of information status in the training data of 

the TTS model is not consistent, considering that the concept 

has different definitions and categories across linguistic 

theories, potentially leading to confusion. Another plausible 

explanation is that the accent in the synthesized two-word 

utterances is not always on the expected item. Visual and 

auditory inspection of the TTS model output indicates that in 

roughly 5% of the utterances, the focus is placed on the first 

word instead of the second, which is deaccented. This 

phenomenon applies particularly in the non-contrastive 

condition, though this accentuation pattern is not attested in 

British English: accenting only yellow in phrases like a yellow 

melon automatically leads to a narrow interpretation, viz. a 

yellow, not a green, melon. Considering that the sentences only 

contained two words, one can imagine that for sentences with 

more complex structures the variability in focus location may 

well increase. 

Although the speech synthesized by OpenAI’s current TTS 

model may not fully replicate human speech in terms of 

conveying information status, it would be premature to dismiss 

the usefulness of synthesized speech in prosodic research. It 

remains necessary to examine the system’s prosodic 

performance in other linguistic aspects. Additionally, other 

LLM-based TTS systems such as those introduced by 

SpeechLab (https://www.speechlab.ai/) and Microsoft 

(https://learn.microsoft.com/en-us/azure/ai-services/speech-

service/text-to-speech) all demonstrate a sufficient level of 

competence in generating natural-sounding speech. Evaluating 

the prosodic performance of these systems would provide 

valuable insights into the current state of TTS development.  

This study may also contribute to approaches for evaluating 

TTS systems. Traditionally, TTS system performance is 

evaluated using mainly two approaches: subjective 

assessments, e.g., ratings based on factors such as naturalness, 

clarity, and quality (e.g., Mean Opinion Score (MOS)); 

objective assessments, such as Mel Cepstral Distortion (MCD), 

which measures how well the synthesized speech matches the 

natural speech in terms of spectral characteristics (See [18] for 

a detailed review). While these approaches help engineers 

understand overall system performance, they do not offer 

insights into specific prosodic nuances. In this study, we 

adopted the method normally used in the study of human 

speech, involving controlled testing materials and F0 modelling 

techniques. Using this approach to evaluate TTS speech could 

provide an understanding of the system’s performance in 

specific prosodic aspects.  

5. Conclusions   

Using a well-tested approach in prosodic research, we found 

that OpenAI’s TTS model (tts-1-hd) is capable of producing 

a variety of natural sounding F0 contour shapes in British 

English utterances. However, the contours do not match those 

produced by human speakers of the same English variety when 

it comes to encoding information structure differences.  
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